Crustal signatures in the Serra Geral flood-basalt province, southern Brazil: O- and Sr-isotope evidence

R. V. Fodor, Cricket Corwin
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695
A. N. Sial
Departamento de Geologia, Universidade Federal de Pernambuco, Recife, PE, Brazil

ABSTRACT
Strontium and oxygen isotopes in igneous rocks from a 35,000-km² region of the Serra Geral (Paraná) continental flood-basalt province, southern Brazil, indicate that certain mantle-derived magmas that formed during the rifting and breakup of Gondwana incorporated continental crust. Sr-O and trace-element assimilation–fractional crystallization models point to variable amounts and types of “warm” Archean granulitic crust, δ¹⁸O >15 and ⁸⁷Sr/⁸⁶Sr(ᵣ) ~0.735, having contaminated ascending mafic magmas. Resulting products include evolved rocks, basaltic andesite to rhyolite, that have δ¹⁸O 11 to 15 and ⁸⁷Sr/⁸⁶Sr(ᵣ) 0.714 to 0.729, and basaltic rocks that have δ¹⁸O 8 to 10 and ⁸⁷Sr/⁸⁶Sr(ᵣ) ~0.710.

INTRODUCTION
Deciphering geochemical and isotopic characteristics of source materials for continental flood-basalt (CFB) provinces requires information on the influence that continental crust had on the magmas rising through the crust. In most CFB provinces, that information must come from the magmas (rocks) themselves. Studies thus far, however, indicate that no categorical evaluation can be made for flood-basalt provinces. There are arguments for little or no magma/crust interaction (Brooks and Hart, 1978; DePaolo and Wasserburg, 1979; DePaolo, 1983; McDougall, 1976; Compston et al., 1968) as well as for substantial interaction (Carter et al., 1978; Carlson et al., 1981; Mahoney et al., 1982; Furnes et al., 1982; Carlson, 1984). In the Serra Geral (Paraná) CFB province in southern Brazil, sorting out continental-crust components from upper-mantle source characteristics is especially relevant. The Serra Geral province is among the world’s largest CFB provinces (~10⁶ km²) and represents one end member of the Cretaceous magmatism that bridged continental and oceanic regimes during the breakup of Gondwana and the opening of the South Atlantic Ocean (continental lithosphere gave way to oceanic lithosphere). Also, earlier isotopic evaluations of the Gondwana mantle beneath Brazil were based on no interaction between basalt and Brazil crust (Compston et al., 1968; Brooks and Hart, 1978; DePaolo and Wasserburg, 1979), and this should be reinvestigated in light of more recent findings for CFB elsewhere.

Our approach to evaluating crustal contamination in the Serra Geral igneous province was to select ten samples representative of the extreme southern part of this varied-rock province (largely basalt and basaltic andesite, but also andesite, rhyodacite, and rhyolite) for combined geochemical and oxygen- and strontium-isotope analyses. In this paper we emphasize the isotopic aspect as the discriminator of crustal interaction, but we apply the geochemical data and descriptions presented elsewhere (Fodor et al., 1985) for these samples. Among the conclusions reached are that the Serra Geral province has a history of magmas assimilating crustal material during fractional crystallization processes of basaltic magmas.

Figure 1. Variations in δ¹⁸O and ⁸⁷Sr/⁸⁶Sr(ᵣ) with SiO₂ and K₂O contents and K/Rb ratios for basalt, basaltic andesite, andesite, and rhyolite from Serra Geral continental flood-basalt province, southern Brazil. Index map shows general geographic location for samples, Rio Grande do Sul state, Brazil. Specific locations in Fodor et al. (1985).
RESULTS AND DISCUSSION

One pertinent point of the independent geochemical study of the Serra Geral province (Fodor et al., 1985) is that crystal fractionation of mafic magmas produced basaltic andesites and a viable process to account also for andesites, rhyodacites, and rhyolites. This feature is illustrated here by the ranges in SiO$_2$, K$_2$O, and K/Rb in the basalt, basaltic andesite, andesite, and rhyolite compositions depicted in Figure 1 and by the geochemical profiles of Table 1. The samples come from an area of about 35,000 km2 in the state of Rio Grande do Sul (specific locations are illustrated in Fodor et al., 1985). They are not all related to one source, but the ten samples can be considered representative of this extreme southern part of the huge Serra Geral province.

The 15O/16O value of about 8.5 in the most mafic samples is much higher than those values of about 5 to 6 typically observed in basalt (Koyser et al., 1982), indicating continental-crust components. And the 18O value is >12 for andesite and rhyolite are particularly indicative of sedimentary or metasedimentary components in these evolved rocks (Taylor, 1980). Petrography shows little in the way of secondary minerals to account for these high 18O values, and the correlation coefficient between 18O and LOI (loss on ignition, largely H$_2$O) is –0.35, eliminating weathering as an important reason for the 18O values. We therefore turn to models involving assimilation–fractional crystallization (AFC) processes in the Brazilian Archean crust during the rifting of South America–Africa landmass.

Constraints assigned to the AFC models are similar to those considered by Taylor (1980): (1) The starting basaltic magma has 15O $-$5.7, 87Sr/86Sr $= 0.703$, and 500 ppm Sr, and is modeled as a 1000-g batch that continually assimilates crust in 1-g increments. (2) The crust has 15O >15, 87Sr/86Sr $= 0.735$, and Sr between 100 and 300 ppm, accounting for M/C$_S$ (magma/crust Sr concentration) ratios of 5 to 15. All of these crustal conditions are reasonable, as based on studies of Brazilian crust (Almeida et al., 1973; Sighinolfi et al., 1981; Oliveira et al., 1982; Wernick and Oliveira, 1982) which show largely granulites and gneisses that are granitic to intermediate in compositions (provided that they had sediment protoliths to account for 18O >15).

Figure 2a presents a model for a "warm" crust (perhaps preheated by earlier magmas) where C/A $= 2$ and 15O = $+17$ for the crustal contaminant (C/A $= 2$; i.e., 2 g of magma crystallized for every 1 g of crust assimilated). Data points are bracketed by curves that represent a relatively high bulk distribution coefficient (D), 1.5, for the crystallizing magma and some that represent high Sr contents in the contaminant (>300 ppm, low M/C). High D requires substantial plagioclase crystallization, but this can be tempered by increasing the 87Sr/86Sr ratio of the contaminant. On the other hand, because of the progressive decrease in Sr for the basalt–rhyolite trend (Table 1), bulk D was probably not <1. The 60%–80% crystallization to account for the evolved rocks plotted in Figure 2 is reasonable. In contrast, "cold" crust models, C/A > 7, require abnormally high 18O in the contaminant to achieve reasonable crystallization percentages of a magma fractionating to evolved liquids.

An additional feature in Figure 2 is the dashed curve for 15O = 15 for the contaminant. It demonstrates the flexibility in the curves with respect to geologic characteristics that likely vary with crustal location and type.

Overall, the curves indicate that plausible starting-magma and assimilant compositions yield viable AFC models for the Rio Grande.

Table 1. Geochemical and Isotopic Profile of Basalt, Basaltic Andesite, Andesite, and Rhyolite from Serra Geral Continental Flood-Basalt Province, Southern Brazil

<table>
<thead>
<tr>
<th>SiO$_2$</th>
<th>K$_2$O</th>
<th>Rb</th>
<th>Sr</th>
<th>Mg$^+$</th>
<th>87Sr/86Sr (m)</th>
<th>87Sr/86Sr (t)</th>
<th>18O</th>
<th>LOI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV01</td>
<td>51.64</td>
<td>1.09</td>
<td>26</td>
<td>238</td>
<td>59.8</td>
<td>0.71060 ± 0.00003</td>
<td>0.71066</td>
<td>8.98</td>
</tr>
<tr>
<td>MO2</td>
<td>52.85</td>
<td>1.55</td>
<td>43</td>
<td>200</td>
<td>57.9</td>
<td>0.71427 ± 0.00005</td>
<td>0.71321</td>
<td>10.09</td>
</tr>
<tr>
<td>RS20</td>
<td>51.50</td>
<td>0.63</td>
<td>12</td>
<td>152</td>
<td>51.7</td>
<td>0.70759 ± 0.00011</td>
<td>0.70721</td>
<td>8.36</td>
</tr>
<tr>
<td>RS73</td>
<td>50.13</td>
<td>0.90</td>
<td>16</td>
<td>327</td>
<td>49.2</td>
<td>0.70663 ± 0.00007</td>
<td>0.70639</td>
<td>7.91</td>
</tr>
<tr>
<td>IO2</td>
<td>52.74</td>
<td>1.83</td>
<td>48</td>
<td>185</td>
<td>45.9</td>
<td>0.71285 ± 0.00010</td>
<td>0.71156</td>
<td>9.53</td>
</tr>
<tr>
<td>RS60</td>
<td>51.96</td>
<td>0.84</td>
<td>17</td>
<td>177</td>
<td>44.5</td>
<td>0.70875 ± 0.00020</td>
<td>0.70826</td>
<td>8.86</td>
</tr>
<tr>
<td>RS80</td>
<td>53.11</td>
<td>0.81</td>
<td>15</td>
<td>151</td>
<td>35.1</td>
<td>0.70877 ± 0.00038</td>
<td>0.70928</td>
<td>9.19</td>
</tr>
<tr>
<td>MR03</td>
<td>55.54</td>
<td>2.38</td>
<td>68</td>
<td>170</td>
<td>29.7</td>
<td>0.71624 ± 0.00043</td>
<td>0.71428</td>
<td>11.34</td>
</tr>
<tr>
<td>RS85</td>
<td>62.69</td>
<td>3.48</td>
<td>120</td>
<td>162</td>
<td>34.1</td>
<td>0.72292 ± 0.00034</td>
<td>0.71927</td>
<td>12.82</td>
</tr>
<tr>
<td>RS50</td>
<td>73.01</td>
<td>5.51</td>
<td>244</td>
<td>89</td>
<td>17.5</td>
<td>0.74206 ± 0.00018</td>
<td>0.72855</td>
<td>15.11</td>
</tr>
</tbody>
</table>

Note: Geochemical data from Fodor et al. (1985), arranged here in basalt to rhyolite order. For Sr isotopic ratios, m = measured, and I = initial (based on ages of 120 Ma). Mg$^+$ = 100 X molecular mg/(mg+fe).

*LOI = loss on ignition (largely H$_2$O), in wt%.

Figure 2: a: Assimilation–fractional crystallization curves for starting basalt magma (triangle) of 15O = 5.7, 87Sr/86Sr $= 0.703$, and Sr = 500 ppm. In fashion of Taylor (1980), 1000 g of magma consumes 1 g of continental crust. Contaminant is 15O = 17 and 87Sr/86Sr = 0.735. Conditions are C/A $= 2$, or 2 g of magma crystallized in response to assimilating 1 g of crust (i.e., relatively warm crust).

Bulk distribution coefficient of Sr in magma is 1.5, except one curve labeled as D = 1. Sr in contaminant varies from 100 to 333 ppm, accounting for magma/crust $= 0.735$. Conditions are C/A $= 2$, or 2 g of magma crystallized in response to assimilating 1 g of crust (i.e., relatively warm crust).
do Sul part of the Serra Geral basalt-rhyolite sequence. Figures 2b and 3 show supporting plots for trace-element concentrations. For example, parameters that apply to Sr-O isotopic variations also apply to Sr plotted against 87Sr/86Sr. Where curves are too Sr-rich to accommodate data points, Sr content proposed for the starting magma can be decreased (which does not appreciably affect Sr-O curves in Fig. 2a). Incompatible-element figures indicate that K_2O in the contaminant varied between 1 and 3 wt% at a reasonable bulk D of 0.2, and Rb was between about 30 and 100 ppm.

The geologic situations we present do not, of course, precisely constrain geochemical and isotopic parameters or indicate that all of these rocks had similar petrogenetic histories. Rather, the C/A = 2 curves in Figures 2 and 3 indicate that the quantity and quality of crustal contamination of basaltic magmas varied. Contamination of the southern Serra Geral magmas probably ranges from negligible (for samples such as RS20, RS60, and RS80; Table 1) to notable, involving crustal crust having high and inhomogeneous values for K_2O, Sr, 87Sr/86Sr, and incompatible-element concentrations (for samples EV01, M02). The combinations of variable geologic conditions, such as the characteristics of Brazilian crustal-rock types and the parental Serra Geral magmas, the efficiency of magma ascent through fracture channelways in rifted Gondwana crust, and magma residence time in chambers, all account for rocks of the Serra Geral flood-basalt province displaying large ranges of geochemical and isotopic crustal signatures (Bellenti et al., 1984; Fodor et al., 1985). It is indisputable that at least part of the large geochemical range (basalt to rhyolite) is due to extensive fractional crystallization attended by assimilation.

Finally, once rhyolitic magmas formed, other igneous processes were likely active. Geochemically, andesite RS65 meets the requirements of a 60:40 mix of magma represented by basaltic andesite MR03 and rhyolite RS50 (Table 1; Fodor et al., 1985). Isotope mixing curves in Figure 2 support this magma-mixing origin for the andesite.

REFERENCES CITED

ACKNOWLEDGMENTS
Supported by National Science Foundation Grant OCE-8308899 and by a Geological Society of America research grant. We thank P. D. Fullagar for his assistance in acquiring Sr-isotope data at the University of North Carolina, and A. Roisenburg, Port Allegre, Brazil, for providing the samples. Oxygen isotope data were acquired by A. Sial at the University of Georgia.

Manuscript received March 18, 1985 Revised manuscript received July 15, 1985 Manuscript accepted July 23, 1985

GEOLOGY, November 1985 Printed in U.S.A. 765